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A semiclassical analysis is proposed to elucidate quantitatively the deviations from the predictions of the
random matrix theory of the observed conditional number density in rectangular billiards with point scatterers
[R. L. Weaver and D. Sornette, Phys. ReVbE 3341(1995]. Using the scattering cross section of the point
scatterer, the spectral form factor is shown to be built on two categories of periodic orbits depending whether
they are scattered or not. Our quantitative predictions are successfully compared to the observed spectral
correlations in various cases of a rectangular billiard with one or several point scatterers.
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It has been conjectured that the eigenvalue statistics aingular billiard. The limit could presumably also be reached
generic systems which are classically chaotic are identical tby study of a Sinai billiard with small arc at large, but finite,
those of random matrices belonging to the Gaussian orthog@nergy. We know of no such studies.
nal ensemblgGOE). It is also accepted that regular inte-  First, we briefly recall that a point scatterer in any dimen-
grable systems should display Poisson statistics. Howevejon D=2 cannot be represented through a scattering poten-
many classically integrable systems have been shown to efial. The scatterer is in fact properly defined bytitsatrix in
hibit spectral rigidity which is typical of GOE-like systems {€rms of which its cross sgctlon |s_readlly obtained. For. the
[1,2]. A particular example is the singular quantum billiard Helmholtz wave equation in two dimensions, the latter is a
introduced by Seb§2]. It consists of a rectangular billiard !‘ength o ,}’Vh_'Ch depends on the frequenay and on a
with an isotropic point scatterer. In previous worka4], strength” dimensionless parameteras|(3]
conditions for the appearance of level repulsion or spectral
rigidity have been discussed, and a quantitative prediction o=4(w\1+4a?). (1)
for the range of GOE-like statistics was proposed in [R&f.
relying upon a proper definition of the scattering cross secThis form is readily obtained by imposing flux conservation
tion of the scatterer. Here we present a semiclassical analysigtween incident and scattered waves which yields a one-
of the spectral form factor in order to provide quantitative parameter transition strength for the scatterer. In a finite sys-
predictions for the conditional density of levels in rectangu-tem, this procedure enables one to find the modes of the
lar billiards with one or several point scatterers. Those predressed systenii.e., with the point scattergrthrough the
dictions are compared with the statistics of eigenvalues numodes of the bare systethe., without the point scatterrer
merically evaluated through the method introduced in Refby using the Lippman-Schwinger equation relating the
[3]. dressed Green'’s function to the undressed Green’s function

A regular billiard with a point scatterer remains fully in- via the parametetr [see Eqs(14)—(23) of Ref. [3]]. This
tegrable. At finite time, and except for a set of measure zerayne-parameter family of eigenvalues constitute the spectrum
the infinitesimal scatterer does not affect ray paths. Onef the self-adjoint extensions of the Helmholtz operator in
might therefore presume that the statistics remain Poissdhe presence of a point scattefdt. The procedure presented
nian. This may be contrasted with the usual asymptotic conin Ref.[3] is extended to the case of several scatterers by the
sideration of the fully chaotic Sinai billiard, in which the analysis presented in the Appendix.
wavelength is taken to zero while the radius of the removed To study quantitatively the spectral correlations among
arc is kept finite, and the statistics are GOE. If, however, onghe eigenvalues associated with the rectangular membrane
investigates thelistinguished limitin which scatterer size is (Dirichlet boundary conditionwith a point scatterer, we fol-
taken to zero at the same rate that wavelength is taken fow a semiclassical analysis along the lines proposed by Ar-
zero, one recovers a regime of considerable current intereggaman, Imry, and Smilanskib]. In the following, we will
This is precisely the limit implicit in recent studi¢8—4] of  use the dimensionless frequency variablew/{A w), where
the isotropic point scatterer with finite cross section in a rectw is the angular frequency afdw) is the mean frequency
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spacing between adjacent modes arownd his amounts to compared to the size of the spheres. The latter problem was
considering the so-called unfolded spectri®). Now, the recently addressed in R¢f], and focused principally on the
commonly considered nearest-neighbor spacing distributiortransition from ballistic to diffusive regimes. If sufficiently
though revealing a possible level repulsion, is not very senmany pointlike impurities were placed in the rectangle bil-
sitive to mid-range or long-range correlations. Instead, thdiard, one could eventually envisage a diffusive dynamical
conditional probabilityg(s)ds of finding a level in the inter- regime for times intermediate between the ballistic regime
val [x+s,x+s+ds], given that there is one level at(as- and the ergodic one, as considered in REf.
suming here and in the rest that the spectrum is statipnary In a two-dimensional billiard of are§, the rate at which
a true two-point measure likely to characterize spectral rigida typical ray hits a disk of diameteris given by the expres-
ity. The latter notion manifests itself in the slow increase ofsion I'= 7o/ 7S (see, for instance, Refl0]). Using the
the variance of the number of levels in a given frequencyleading part of Weyl's formula for the modal density at high
interval with the mean value of this numbgypically, for ~ frequencies, the mean spacing between adjacent eigenfre-
GOE spectraz?=((N—(N))?)~(2/7?)In(2m(N)) for large  quencies readéA w)~2m/wS, which enables one to define
(N) whereas, for uncorrelated Poisson specEad=(N)] the dimensionless rate
[6]. The conditional number densig(s) is equivalently ex-
pressed as % 4(s)+K(s) where K(s)=((d[x—(s/2)] wo 2
—1)(d[x+(s/2)]— 1)) is the autocovariance of the spectral y=I'l(Aw)= om 7_r\/lf—é,raz'
density d(x)=2,8(x—X,) (the mean value of which is
unity). Defining the spectral form factor as the Fourier trans-One then proceeds to evaluate the spectral form factor by
form K(7)=[ds d™°K(s), one may showsee Ref[5] and  summing up the contributions associated to the two catego-
also Berry's course in Ref7]) that a semiclassical evalua- ries of p.o.’s mentioned above. In the dressed rectangle, the
tion of the form factor is obtained as a sum over periodicfraction of regular periodic trajectori¢belonging to the pe-
orbits of the corresponding billiard, which rea@s the di-  riodic orbits of the regular undressed billianghich have not
agonal approximation met the scatterer at timemay be approximated to decay like
exp(—y7), thus reducing by an identical factor the amplitude
- ) A associated with those orbits in the sum r(2& Since the
K(TWpZO,S |A[#8(7— 7)), @  sum rule in the integrable biliard  yields
' K(7)—A2(7)pp(7)=1 [8], wherepy(7) is the density(per
unit dimensionless timeof p.o.’s of the bare rectangle, one
deduces the “regular part” of the form factor of the dressed
rectangle

()

where theA;'s are the amplitudes and th¢'s are the dimen-
sionless period§(A w)T= 7, with T the true perioyl of the
periodic orbits. This sum rule yields a valid approximation of
the spectral form factor for values af much larger than Rreg( ~e 277 ()
(Aw)Ty (with Ty being the period of the shortest periodic d '

orbit) and still much smaller than72 For larger values of,  For the other group of p.o.’s, one can reasonably assume that
another sum rule, proposed by Befi#], shows thakK—1 if  the corresponding “ergodic part” of the form factor is ob-
727, The sum rule given by Eq2) has proved to give the tained through the ansatz consisting of multiplying the GOE
correct universal behavior as well in genetic regular systemform factor by the relative fraction of trajectories which have
[whereK(7)=1, yielding the Poisson statistics for uncorre- met the coarse-grained scatterer at least once before the time
lated spectra, see, for instance, R8{] as in chaotic systems

with or without time reversal invariancéwhere K(7) ~or B

~ 7/4r, which is the smallr leading behavior of the GOE Kaqm=(1—e ")[1—bgog 7)]. 5

form factor 1- 7); , for instancd,7]]. . . . .
° The ﬁeoy to tﬁg?g(llo)wirswzear;umesn?wCiIT{bg to consider that Indeed, according to Re_[5], a s_emmlgssmal evaluat|_on of
the wave problem associates a finite size of the order of thi1€ SPectral form factor is obtained éa the case of time-
cross section to the point scatterer, and that this coarsé€versal symmetiyK(7)~(7/m)P(7), whereP(7) denotes
grained scale should be taken as the diameter of a virtud'® classical probability for periodic motion. The factor
disk centered at the position of the scatterer, and fixing a7/ 7) is in fact the so-called diagonal approximation of the
effective range of action of the latter on ray trajectories in theGOE spectral form factor 2bgog(7), and P(7), in the
billiard. Thus, when considering the problem of a point scatPresent case, should be given by-{& ") for times large
terer in a regular billiard like the rectangle, one should sub£€nough compared to the time of flightacross the billiard.
divide the periodic orbit§p.0.’s) into two categories: the first Presumably, there exist deviations from the GGEe Ref.
group consists of p.o.’s of the original regular billiard which [11]), and the contribution from the ergodic orbits could be
do not hit the disk associated to a “coarse-grained” scatterefodified to account for them, but they do not concern us as
while the other group consists of “new” trajectories which all the levels we study are in the reginge>1, whereg

hit this disk at least once, and which are responsible, at larg& 1/((Aw)ts) is the so-called dimensionless conductance.
enough times, for the ergodic regime of the wave problemBYy summing both contributions, Eq@l) and(5), one obtains
Here we would like to stress that our approach is concernedur approximation for the complete form factiy(7) for

with an integrable system with one or a few point scatterersthe dressed rectangle. A numerical inverse Fourier transform
and not with hyperspherical rigid scatterers placed at randorthen leads to the corresponding conditional number density
in a hypercubic billiard in the limit of vanishing wavelength g4(s). Our result differs from that obtained by Agam and
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FIG. 1. Conditional number density observed among more than
10* even-even modes in the dressed rectangle with a single-point
scatterer at the center. It is compared to an evaluation of the con-
ditional densitygq(s) (dotted ling obtained through a numerical
inverse Fourier transform of our approximation for the complete
form factor Ky4(7) with y=2/7. For the sake of comparison, the
prediction of the GOE is showsolid line).
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Fishmarn 9] for two chief reasongia) our formula(4) differs
by a factor of 2 from the corresponding formul®) in the
first of Ref.[9]; (b) in Ref.[9], their system has the geometry
of the torus(leading to the absence of periodic orbits which 021 7
are scattered only ongewhereas ours has Dirichlet bound- b ®
ary conditions: this explains why the fourth term of formula oV
(5.9 in the second of Ref9] does not appear in our result. 0 03 06 09 12 15 18 21 24 27

A related result was obtained by Altland and Gefdarz] s

through a diagrammatic perturbative analysis of nondiffusive £\ 2. same as in Fig. 1 for the cases of a rectangular billiard
disordered electron systems; apart from the term accountingiih () three full strength scatterers placed at random, @i

for the orbits that are not scattered, their re$fly. (32) of ) strength scatterers placed at random. The dotted line shows our
Ref.[12]] is identical to that obtained by Agam and Fishmanyregiction with(a) y= 6/ and (b) y=12/x.
[9], and thus differs from ours in the limit studied in the

present paper, namely, the ballistic regime. In conclusion, we have proposed a quantitative prediction
In Fig. 1, we plot the conditional density observed amongrq, the conditional density in rectangle billiards with point
more than 10 levels corresponding to even-even modes obxcatterers, using a semiclassical analysis of the spectral form
tained in ten different rectangles with a smgle-p_omt scatteref,cior based on the partition of periodic orbits in two catego-
at the centersee Ref[3]; also see the Appendix, where a yies: one accounts for the regular behavior of the spectrum
d|scussmn.of t_he m.ethod by which the numerical data were, raations at large frequency range, while the other one
generated is given in the general case of many scatterers, g§jjgs upon scattered orbits which contribute to the ergodic
well as a short summary of what systems were studied andart of the form factor leading to short- and intermediate-
what the range of eigenvalues examinethe parameterr  range spectral rigidity. This prediction was shown to be in
was chosen to be zero. This numerical result is compared {9o4d agreement with numerically observed levels in the rect-
the inverse transform of the sum of Edg) and (5 [13]  angylar billiard with either a single centered scatterer or a
(dotted ling with y= 2/ and also to the conditional density te\y point scatterers placed at random. It is remarkable that

for GOE spectra, namely, 1Y, god(s). The agreement is g, ch a simple theory does as well as it does in spite of its
fair, especially for values of smaller than unity. For larger |imitations.

values, oscillations are seen in the numerical data which can-

not be reproduced by the above ansatz. In Fig. 2, we(pJot It is our pleasure to thank D. Sornette for very fruitful
the conditional density observed for levels in a rectangle bil-discussions on this problem. One of (8.L.) wishes to ac-
liard with three maximum strength scatterets<0) located knowledge very stimulating discussions with Eugene Bogo-
at random positions not too near the edge and compare it tmolny.

our prediction(dotted ling with y=6/7; and (b) the same

for a rectangle billiard v_v?th six maximum strength scatterers APPENDIX

located at random positions not too near the edge and with

y=12/w. Again, even if numerical data are closer to the We define the bare Green’s functid®®(r, S) as the har-
GOE behavior, the agreement with our ansatz is still signifi-nonic (w) response at position to a unit source a$ in a
cant. rectangular domain without scatterers. The resp@iggs)

0.4 4

conditional density number
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in the system withj scatterersj(=1,2,3...,n) is a superpo- The complex scattering strengthis related to the real pa-
sition of a response which directly propagates by means afametera, by Eq. (13) of Ref.[3]:

G°, and several fields, each the bare response to a point

source of as yet unknown strengthsat positionsb; . Thus

the total field due to a source atis given by t=(i/4+a)" L. (AB)

G(F,8)=G(F,§)+ > GF,b)A, (A1) . . o
] Equation(A4) may be written as an algebraic relation among

) ) the unknown source strengtis:
for some as-yet-undetermined set of effective source

strengthsA;. The quantitiesA; in general depend on the
source positions as well as the positions and scattering

strengths of all the scatterers. In the vicinity of scatterer A|[t|f(6,)—1]+t|2 GO(B, ,Bj)Ajth,GO(B, ,S)=0.
|

numberl, the field is

G(F~by,8)=G%b,§)+ >, Gby,b)A,
i

J’_

f(ti)—l—lHgl)(wllr*—f)ﬂl)}m (A2)

where we have used the form given in Et6) of Ref.[3] to

iz
(AB)

Equation(A6) is a linear algebraic relation for the effective
source strength4,; . It is singular, indicating a resonance in
the composite system, whenever the matrix of the coeffi-
cients of theA;’s has a vanishing determinant. This is the
criterion used to find the eigenvalues of the composite sys-

describe the bare Green’s function in the vicinity of its sin-tem.

gularity in terms of an incident pafttilue to multiple reflec-

tions from the boundajdyand an outgoing parf. is given by

[3]

f(ﬁ)zlin](Go(F,S)Jriz HY (wllF - 6||)]. (A3)

T—b

The efficient evaluation of is discussed in Ref.3]. The
ratio of the coefficient of the outgoing pa#{" to the inci-

The elements of the matrix of coefficients of tAgs are
singular at each of the eigenvalues of the bare systems; thus
the matrix can be ill conditioned near these eigenvalues. It
may be shown, however, that the determinant has only a
simple pole at these eigenvalues. The numerical procedures
used to evaluate the determinant were therefore written to
take advantage of this feature, and thereby to avoid most of
the ill-conditioning.

The conditional densities reported in Fig. 2 were taken

dent part is, by definition, the scattering strength of the scatfrom about 22 500 levels for each of the casasand (b).
terer (a property of the scatterer and independent of the sysfhe 22 500 levels were taken from nine sample systems each

tem in which it is placefd

t.=A./ [G°(6|,§)+El GO(S.,Bj)AjJrf(Bl)A,}
IE:
(Ad)

of about 2500 levels in the range of 8@ <80, consisting

of rectangles of sizerx w/(\/5—1). The case of the single
scatterer at the center of Fig. 1 was reported in R&f.the
conditional density for this case was based on 10 000 even-
even levels in the range 60w<<100.
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