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A semiclassical analysis is proposed to elucidate quantitatively the deviations from the predictions of the
random matrix theory of the observed conditional number density in rectangular billiards with point scatterers
@R. L. Weaver and D. Sornette, Phys. Rev. E52, 3341~1995!#. Using the scattering cross section of the point
scatterer, the spectral form factor is shown to be built on two categories of periodic orbits depending whether
they are scattered or not. Our quantitative predictions are successfully compared to the observed spectral
correlations in various cases of a rectangular billiard with one or several point scatterers.
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It has been conjectured that the eigenvalue statistic
generic systems which are classically chaotic are identica
those of random matrices belonging to the Gaussian ortho
nal ensemble~GOE!. It is also accepted that regular inte
grable systems should display Poisson statistics. Howe
many classically integrable systems have been shown to
hibit spectral rigidity which is typical of GOE-like system
@1,2#. A particular example is the singular quantum billia
introduced by Seba@2#. It consists of a rectangular billiard
with an isotropic point scatterer. In previous works@3,4#,
conditions for the appearance of level repulsion or spec
rigidity have been discussed, and a quantitative predic
for the range of GOE-like statistics was proposed in Ref.@3#,
relying upon a proper definition of the scattering cross s
tion of the scatterer. Here we present a semiclassical ana
of the spectral form factor in order to provide quantitati
predictions for the conditional density of levels in rectang
lar billiards with one or several point scatterers. Those p
dictions are compared with the statistics of eigenvalues
merically evaluated through the method introduced in R
@3#.

A regular billiard with a point scatterer remains fully in
tegrable. At finite time, and except for a set of measure z
the infinitesimal scatterer does not affect ray paths. O
might therefore presume that the statistics remain Poi
nian. This may be contrasted with the usual asymptotic c
sideration of the fully chaotic Sinai billiard, in which th
wavelength is taken to zero while the radius of the remo
arc is kept finite, and the statistics are GOE. If, however,
investigates thedistinguished limitin which scatterer size is
taken to zero at the same rate that wavelength is take
zero, one recovers a regime of considerable current inte
This is precisely the limit implicit in recent studies@2–4# of
the isotropic point scatterer with finite cross section in a re
551063-651X/97/55~6!/7741~4!/$10.00
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angular billiard. The limit could presumably also be reach
by study of a Sinai billiard with small arc at large, but finit
energy. We know of no such studies.

First, we briefly recall that a point scatterer in any dime
sionD>2 cannot be represented through a scattering po
tial. The scatterer is in fact properly defined by itst matrix in
terms of which its cross section is readily obtained. For
Helmholtz wave equation in two dimensions, the latter is
length s which depends on the frequencyv and on a
‘‘strength’’ dimensionless parametera as @3#

s54/~vA114a2!. ~1!

This form is readily obtained by imposing flux conservati
between incident and scattered waves which yields a o
parameter transition strength for the scatterer. In a finite s
tem, this procedure enables one to find the modes of
dressed system~i.e., with the point scatterer! through the
modes of the bare system~i.e., without the point scatterrer!
by using the Lippman-Schwinger equation relating t
dressed Green’s function to the undressed Green’s func
via the parametera @see Eqs.~14!–~23! of Ref. @3##. This
one-parameter family of eigenvalues constitute the spect
of the self-adjoint extensions of the Helmholtz operator
the presence of a point scatterer@4#. The procedure presente
in Ref. @3# is extended to the case of several scatterers by
analysis presented in the Appendix.

To study quantitatively the spectral correlations amo
the eigenvalues associated with the rectangular memb
~Dirichlet boundary condition! with a point scatterer, we fol-
low a semiclassical analysis along the lines proposed by
gaman, Imry, and Smilansky@5#. In the following, we will
use the dimensionless frequency variablex[v/^Dv&, where
v is the angular frequency and^Dv& is the mean frequency
7741 © 1997 The American Physical Society
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7742 55BRIEF REPORTS
spacing between adjacent modes aroundv. This amounts to
considering the so-called unfolded spectrum@6#. Now, the
commonly considered nearest-neighbor spacing distribut
though revealing a possible level repulsion, is not very s
sitive to mid-range or long-range correlations. Instead,
conditional probabilityg(s)ds of finding a level in the inter-
val @x1s,x1s1ds#, given that there is one level atx ~as-
suming here and in the rest that the spectrum is stationary!, is
a true two-point measure likely to characterize spectral rig
ity. The latter notion manifests itself in the slow increase
the variance of the number of levels in a given frequen
interval with the mean value of this number@typically, for
GOE spectra,(2[^(N2^N&)2&'(2/p2)ln(2p^N&) for large
^N& whereas, for uncorrelated Poisson spectra,(25^N&#
@6#. The conditional number densityg(s) is equivalently ex-
pressed as 12d(s)1K(s) where K(s)5^„d@x2(s/2)#
21…„d@x1(s/2)#21…& is the autocovariance of the spectr
density d(x)5(nd(x2xn) ~the mean value of which is
unity!. Defining the spectral form factor as the Fourier tran
form K̃(t)5*ds ei tsK(s), one may show~see Ref.@5# and
also Berry’s course in Ref.@7#! that a semiclassical evalua
tion of the form factor is obtained as a sum over perio
orbits of the corresponding billiard, which reads~in the di-
agonal approximation!

K̃~t!'(
p.o’s

uAj u2d~t2t j !, ~2!

where theAj ’s are the amplitudes and thet j ’s are the dimen-
sionless periods~^Dv&T5t, with T the true period! of the
periodic orbits. This sum rule yields a valid approximation
the spectral form factor for values oft much larger than
^Dv&T0 ~with T0 being the period of the shortest period
orbit! and still much smaller than 2p. For larger values oft,
another sum rule, proposed by Berry@7#, shows thatK̃→1 if
t@2p. The sum rule given by Eq.~2! has proved to give the
correct universal behavior as well in genetic regular syste
@whereK̃(t)51, yielding the Poisson statistics for uncorr
lated spectra, see, for instance, Ref.@8## as in chaotic system
with or without time reversal invariance@where K̃(t)
't/p, which is the smallt leading behavior of the GOE
form factor 12bGOE(t); see, for instance,@7##.

The key to the following argument will be to consider th
the wave problem associates a finite size of the order of
cross section to the point scatterer, and that this coa
grained scale should be taken as the diameter of a vir
disk centered at the position of the scatterer, and fixing
effective range of action of the latter on ray trajectories in
billiard. Thus, when considering the problem of a point sc
terer in a regular billiard like the rectangle, one should s
divide the periodic orbits~p.o.’s! into two categories: the firs
group consists of p.o.’s of the original regular billiard whic
do not hit the disk associated to a ‘‘coarse-grained’’ scatte
while the other group consists of ‘‘new’’ trajectories whic
hit this disk at least once, and which are responsible, at la
enough times, for the ergodic regime of the wave proble
Here we would like to stress that our approach is concer
with an integrable system with one or a few point scattere
and not with hyperspherical rigid scatterers placed at rand
in a hypercubic billiard in the limit of vanishing waveleng
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compared to the size of the spheres. The latter problem
recently addressed in Ref.@9#, and focused principally on the
transition from ballistic to diffusive regimes. If sufficientl
many pointlike impurities were placed in the rectangle b
liard, one could eventually envisage a diffusive dynami
regime for times intermediate between the ballistic regi
and the ergodic one, as considered in Ref.@5#.

In a two-dimensional billiard of areaS, the rate at which
a typical ray hits a disk of diameters is given by the expres-
sion G5ps/pS ~see, for instance, Ref.@10#!. Using the
leading part of Weyl’s formula for the modal density at hig
frequencies, the mean spacing between adjacent eige
quencies readŝDv&'2p/vS, which enables one to defin
the dimensionless rate

g5G/^Dv&5
vs

2p
5

2

pA114a2
. ~3!

One then proceeds to evaluate the spectral form factor
summing up the contributions associated to the two cate
ries of p.o.’s mentioned above. In the dressed rectangle,
fraction of regular periodic trajectories~belonging to the pe-
riodic orbits of the regular undressed billiard! which have not
met the scatterer at timet may be approximated to decay lik
exp(2gt), thus reducing by an identical factor the amplitu
A associated with those orbits in the sum rule~2!. Since the
sum rule in the integrable billiard yield
K̃(t)→A2(t)rb(t)51 @8#, whererb(t) is the density~per
unit dimensionless time! of p.o.’s of the bare rectangle, on
deduces the ‘‘regular part’’ of the form factor of the dress
rectangle

K̃d
reg~t!'e22gt. ~4!

For the other group of p.o.’s, one can reasonably assume
the corresponding ‘‘ergodic part’’ of the form factor is ob
tained through the ansatz consisting of multiplying the GO
form factor by the relative fraction of trajectories which ha
met the coarse-grained scatterer at least once before the
t

K̃d
erg~t!5~12e2gt!@12bGOE~t!#. ~5!

Indeed, according to Ref.@5#, a semiclassical evaluation o
the spectral form factor is obtained as~in the case of time-
reversal symmetry! K̃(t)'(t/p)P(t), whereP(t) denotes
the classical probability for periodic motion. The fact
(t/p) is in fact the so-called diagonal approximation of t
GOE spectral form factor 12bGOE(t), and P(t), in the
present case, should be given by (12e2gt) for times large
enough compared to the time of flightt f across the billiard.
Presumably, there exist deviations from the GOE~see Ref.
@11#!, and the contribution from the ergodic orbits could
modified to account for them, but they do not concern us
all the levels we study are in the regimeg̃@1, where g̃
[1/(^Dv&t f) is the so-called dimensionless conductan
By summing both contributions, Eqs.~4! and~5!, one obtains
our approximation for the complete form factorK̃d(t) for
the dressed rectangle. A numerical inverse Fourier transf
then leads to the corresponding conditional number den
gd(s). Our result differs from that obtained by Agam an
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Fishman@9# for two chief reasons:~a! our formula~4! differs
by a factor of 2 from the corresponding formula~5! in the
first of Ref.@9#; ~b! in Ref. @9#, their system has the geomet
of the torus~leading to the absence of periodic orbits whi
are scattered only once!, whereas ours has Dirichlet bound
ary conditions: this explains why the fourth term of formu
~5.9! in the second of Ref.@9# does not appear in our resul
A related result was obtained by Altland and Gefen@12#
through a diagrammatic perturbative analysis of nondiffus
disordered electron systems; apart from the term accoun
for the orbits that are not scattered, their result@Eq. ~32! of
Ref. @12## is identical to that obtained by Agam and Fishm
@9#, and thus differs from ours in the limit studied in th
present paper, namely, the ballistic regime.

In Fig. 1, we plot the conditional density observed amo
more than 104 levels corresponding to even-even modes
tained in ten different rectangles with a single-point scatte
at the center~see Ref.@3#; also see the Appendix, where
discussion of the method by which the numerical data w
generated is given in the general case of many scatterer
well as a short summary of what systems were studied
what the range of eigenvalues examined!. The parametera
was chosen to be zero. This numerical result is compare
the inverse transform of the sum of Eqs.~4! and ~5! @13#
~dotted line! with g52/p and also to the conditional densit
for GOE spectra, namely, 12Y2,GOE(s). The agreement is
fair, especially for values ofs smaller than unity. For large
values, oscillations are seen in the numerical data which c
not be reproduced by the above ansatz. In Fig. 2, we plo~a!
the conditional density observed for levels in a rectangle
liard with three maximum strength scatterers (a50) located
at random positions not too near the edge and compare
our prediction~dotted line! with g56/p; and ~b! the same
for a rectangle billiard with six maximum strength scatter
located at random positions not too near the edge and
g512/p. Again, even if numerical data are closer to t
GOE behavior, the agreement with our ansatz is still sign
cant.

FIG. 1. Conditional number density observed among more t
104 even-even modes in the dressed rectangle with a single-p
scatterer at the center. It is compared to an evaluation of the
ditional densitygd(s) ~dotted line! obtained through a numerica
inverse Fourier transform of our approximation for the compl
form factor K̃d(t) with g52/p. For the sake of comparison, th
prediction of the GOE is shown~solid line!.
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In conclusion, we have proposed a quantitative predict
for the conditional density in rectangle billiards with poi
scatterers, using a semiclassical analysis of the spectral
factor based on the partition of periodic orbits in two categ
ries: one accounts for the regular behavior of the spect
correlations at large frequency range, while the other o
builds upon scattered orbits which contribute to the ergo
part of the form factor leading to short- and intermedia
range spectral rigidity. This prediction was shown to be
good agreement with numerically observed levels in the re
angular billiard with either a single centered scatterer o
few point scatterers placed at random. It is remarkable
such a simple theory does as well as it does in spite of
limitations.

It is our pleasure to thank D. Sornette for very fruitf
discussions on this problem. One of us~O.L.! wishes to ac-
knowledge very stimulating discussions with Eugene Bo
molny.

APPENDIX

We define the bare Green’s function,G0(rW, sW) as the har-
monic ~v! response at positionrW to a unit source atsW in a
rectangular domain without scatterers. The responseG(rW,sW)

n
int
n-

e

FIG. 2. Same as in Fig. 1 for the cases of a rectangular billi
with ~a! three full strength scatterers placed at random, and~b! six
full strength scatterers placed at random. The dotted line shows
prediction with~a! g56/p and ~b! g512/p.
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in the system withj scatterers (j51,2,3,...,n) is a superpo-
sition of a response which directly propagates by mean
G0, and several fields, each the bare response to a p
source of as yet unknown strengthsAj at positionsbW j . Thus
the total field due to a source atsW is given by

G~rW,sW !5G0~rW,sW !1(
j
G0~rW,bW j !Aj ~A1!

for some as-yet-undetermined set of effective sou
strengthsAj . The quantitiesAj in general depend on th
source positionsW as well as the positions and scatteri
strengths of all the scatterers. In the vicinity of scatte
numberl , the field is

G~rW'bW l ,sW !5G0~bW l ,sW !1(
jÞ l

G0~bW l ,bW j !Aj

1F f ~bW l !2
i

4
H0

~1!~virW2bW l i !GAl ~A2!

where we have used the form given in Eq.~16! of Ref. @3# to
describe the bare Green’s function in the vicinity of its s
gularity in terms of an incident part~due to multiple reflec-
tions from the boundary! and an outgoing part.f is given by
@3#

f ~bW !5 lim
rW→bW

HG0~rW,bW !1
i

4
H0

~ l !~virW2bW i !J . ~A3!

The efficient evaluation off is discussed in Ref.@3#. The
ratio of the coefficient of the outgoing partH0

(1) to the inci-
dent part is, by definition, the scattering strength of the s
terer~a property of the scatterer and independent of the s
tem in which it is placed!:

t l5AlY FG0~bW l ,sW !1(
jÞ l

G0~bW l ,bW j !Aj1 f ~bW l !Al G .
~A4!
of
int

e

r

-

t-
s-

The complex scattering strengtht l is related to the real pa
rametera l by Eq. ~13! of Ref. @3#:

t5~ i /41a!21. ~A5!

Equation~A4! may be written as an algebraic relation amo
the unknown source strengthsAj :

Al@ t l f ~bW l !21#1t l(
jÞ l

G0~bW l ,bW j !Aj1t lG
0~bW l ,sW !50.

~A6!

Equation~A6! is a linear algebraic relation for the effectiv
source strengthsAj . It is singular, indicating a resonance
the composite system, whenever the matrix of the coe
cients of theAj ’s has a vanishing determinant. This is th
criterion used to find the eigenvalues of the composite s
tem.

The elements of the matrix of coefficients of theAj ’s are
singular at each of the eigenvalues of the bare systems;
the matrix can be ill conditioned near these eigenvalues
may be shown, however, that the determinant has onl
simple pole at these eigenvalues. The numerical proced
used to evaluate the determinant were therefore written
take advantage of this feature, and thereby to avoid mos
the ill-conditioning.

The conditional densities reported in Fig. 2 were tak
from about 22 500 levels for each of the cases~a! and ~b!.
The 22 500 levels were taken from nine sample systems e
of about 2500 levels in the range of 50,v,80, consisting
of rectangles of sizep3p/(A521). The case of the single
scatterer at the center of Fig. 1 was reported in Ref.@3#; the
conditional density for this case was based on 10 000 ev
even levels in the range 60,v,100.
.
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p2g2

12~s/g!2

@11~s/g!2#2

1
1
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1

11~s/2g!2
.

This is presumably valid at larges, but it is found to be a fair
approximation for all but the smallest ranges.


